TOPEX / POSEIDON PROJECT

SATELLITE / SENSORS PERFORMANCE CHARACTERISTICS WORKSHOP #9

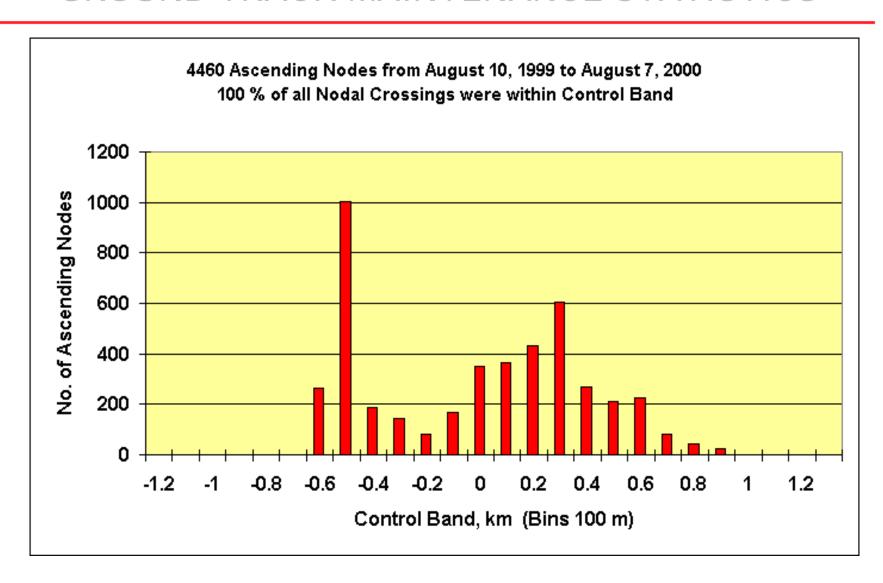
Abe Soroosh

Maneuver Performance and Orbit Maintenance Status

August 8, 2000

CONTENTS

- Ground Track Maintenance Requirements
- Statistical Distribution of Ground Tracks
- Verification Site Overflights
- Variation of Key Orbital Parameters
- Lead / Lag Strategy
- Performance of Maintenance Maneuvers
- Conclusions



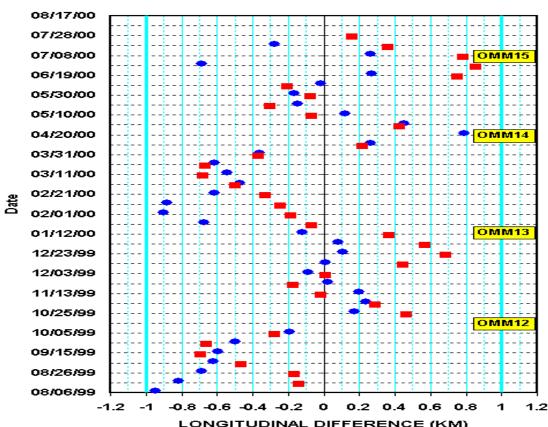
GROUND TRACK MAINTENANCE REQUIREMENTS

- 95 % of all equatorial crossings are contained within a 2-km longitude band at each orbit node
- 95 % of all verification site overflights are within 1-km about the site during initial verification phase. This requirement is currently being kept
- Mean value of Eccentricity is contained within 0.001
- Maneuver spacing be consistent with POD requirements
- Maintenance maneuvers over land

GROUND TRACK MAINTENANCE STATISTICS

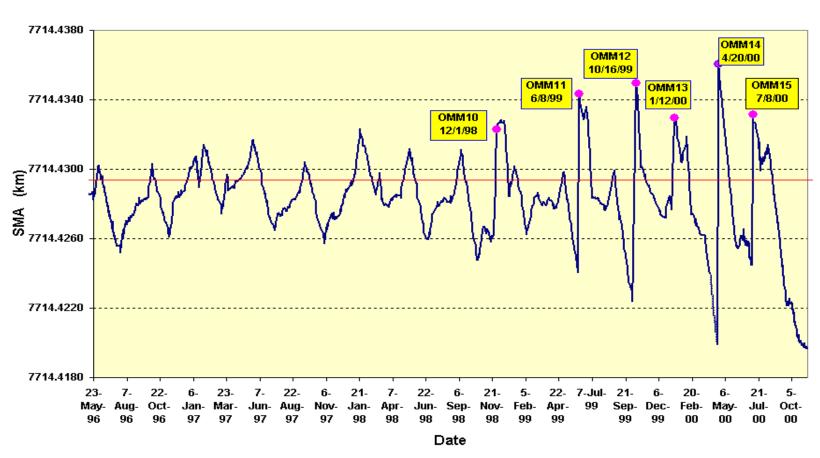
VERIFICATION SITE OVERFLIGHTS MAINTENANCE

- Continued to maintain verification site overflights within the control band for both NASA and CNES
- No violation of site overflights since last workshop
- No violation of site overflights since Feb. 1997



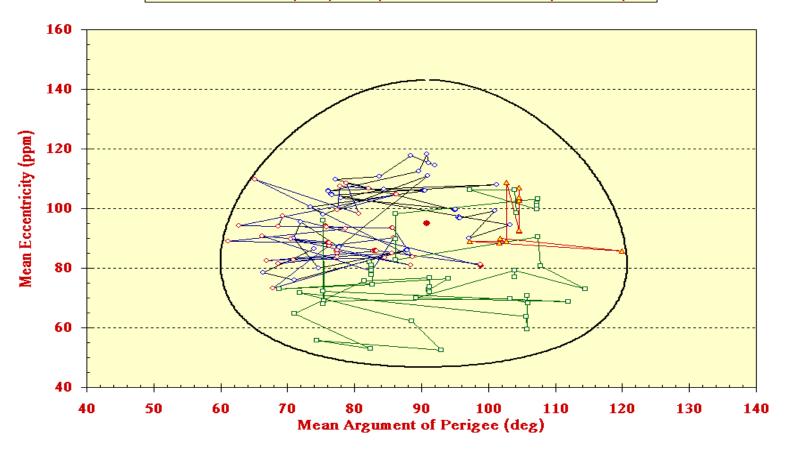
TOPEX/POSEIDON VERIFICATION SITES

NASA: 239.32 deg **CNES: 12.32 deg**


LONGITUDINAL DIFFERENCE (KM)

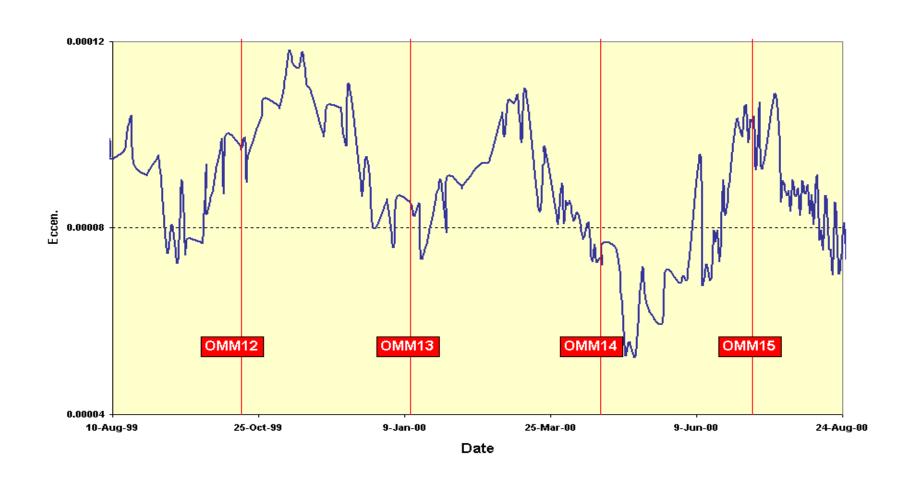
MEAN SEMI_MAJOR AXIS HISTORY

Reference SMA =7714.42938 km

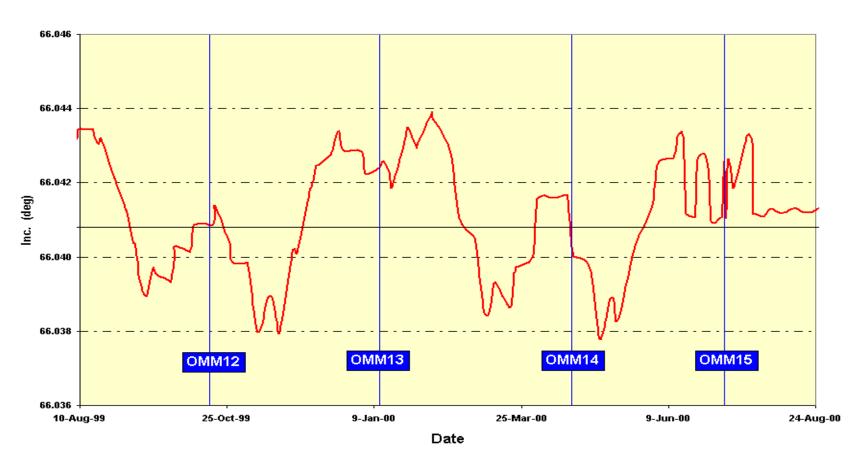


Mean Eccentricity Vector

(August 1999 - August 2000)


Frozen' Design Point
 After OMM12 (16 Oct 1999)
 After OMM13 (12 Jan 2000)
 After OMM14 (20 Apr 2000)

Mean Orbit Eccentricity Variations vs. Time



Mean Inclination History

Reference Value = 66.0408 deg

LEAD /LAG STRATEGY

- Full and partial lead / lag strategies during fixed yaw periods continued to be used to maintain ground track within control boundaries, and to maximize maneuver spacing
- Fixed yaw periods:

$$-30^{\circ} < \text{ß}' < 0^{\circ}$$
 (flying backward, yaw=180°)
 $0^{\circ} < \text{ß} < 30^{\circ}$ (flying forward, yaw=0°)

• Continued dual solar array pitch bias (SAB) strategy to accommodate battery management concerns.

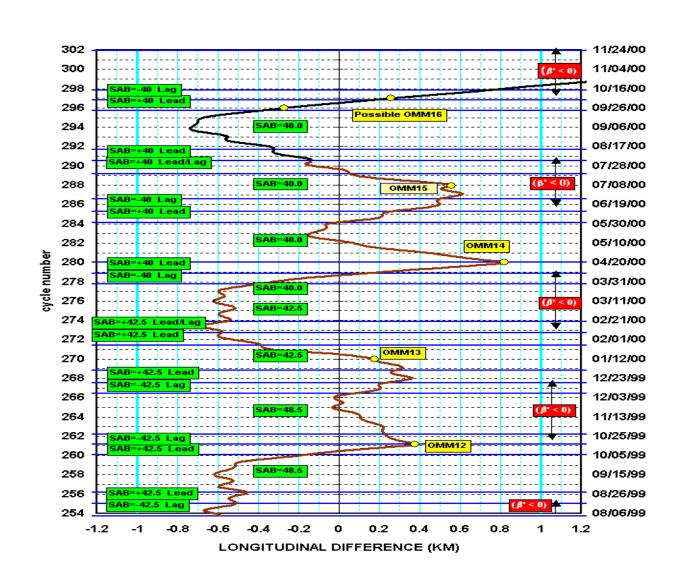
SAB =
$$+40^{\circ}$$
 (SA in lead position)
SAB = -40° (SA in lag position)

LEAD /LAG STRATEGY

Creating boost strategy : (SAB lead + yaw=0°)

(SAB lag + yaw=
$$180^{\circ}$$
)

Creating decay strategy : (SAB lead + yaw=180°)


(SAB lag + yaw=
$$0^{\circ}$$
)

- Solar activity has increased considerably since last year.
 Drag forces becoming dominant forces reducing influence of lead / lag strategies.
- Four maneuvers since last workshop. Average maneuver spacing of 3 months accomplished using lead/lag strategy.
- Plan to standardize maneuvers, (OMMs during fixed yaw flying forward periods) to reduce / simplify design, constraint checking and to eliminate large yaw turns.
- OMM15 was performed on July 8, 2000 and next maneuver is expected late September 2000.

TOPEX/POSEIDON GROUND TRACK VARIATIONS AT ASCENDING EQUATOR CROSSINGS

Summary of Orbit Maintenance Maneuvers

ОММ	DATE	CENTROID	ORBIT	CYCLE	MAN	Ach.
		TIME (UTC)	No.	BOUND.	SPACING	Delta-v
					(DAYS)	(mm/s)
OMM1	10/12/92	23:13:00	807	2/3		9.43
OMM2	12/21/92	09:03:00	1696	9/10	70	3.15
ОММ3	3/30/93	12:44:00	2966	19/20	99	4.62
OMM4	8/6/93	10:01:00	4617	32/33	129	4.61
ОММ5	1/31/94	20:50:30	6902	50/51	178	4.12
ОММ6	5/20/94	23:52:00	8300	61/62	109	3.12
ОММ7	10/6/94	18:13:00	10077	75/76	139	3.14
ОММ8	5/22/95	22:03:00	13000	98/99	226	3.83
ОММ9	1/15/96	19:10:42	16046	122/123	238	3.65
OMM10	12/1/98	20:36:40	29508	228/229	1051	2.88
OMM11	6/8/99	07:11:00	31922	247/248	189	5.02
OMM12	10/16/99	19:18:00	33594	260/261	130	5.88
OMM13	1/12/00	10:39:00	34716	269/270	88	3.05
OMM14	4/20/00	15:56:00	35987	279/280	99	6.60
OMM15	7/8/00	23:09:00	37003	287/288	79	3.39

Maneuver Performance

Maneuver	Date	ldeal del-v	Ach. del-v	Ach. Del-v	Difference
		(mm/s)	NAVT	FDF	Ach-Ideal (%)
OMM1	OCT 12, 92	9.100	9.431	9.425	+3.64
OMM2	DEC 21, 92	3.200	3.153	3.151	-1.47
ОММ3	MAR 30, 93	4.676	4.617	4.610	-1.26
OMM4	AUG 6, 93	4.620	4.611	4.611	-0.20
ОММ5	JAN 31, 94	4.000	4.116	4.102	+2.90
ОММ6	MAY 20, 94	3.150	3.123	3.123	-0.78
ОММ7	OCT 6, 94	3.150	3.146	3.162	-0.21
ОММ8	MAY 22, 95	3.860	3.832	3.832	-0.78
ОММ9	JAN 15, 96	2.500	3.652	N.A.	+46.00
OMM10	DEC 1, 98	3.100	2.877	2.935	-7.19
OMM11	JUN 8, 99	5.200	5.021	5.014	-3.50
OMM12	OCT 16, 99	5.700	5.878	6.063	+3.12
OMM13	JAN 12, 00	3.200	3.054	3.036	-4.56
OMM14	APR 20, 00	6.800	6.600	6.740	-2.90
OMM15	JUL 8, 00	3.400	3.389	3.506	-0.32

Conclusion

- Ground track and orbit maintenance status well within mission requirements. Verification site overflights requirements continued to be met.
- OMM12, OMM13, OMM14, OMM15 implemented successfully since workshop#8.
- Anomalous force continues to be uncertain force. However its influence becoming less than drag uncertainties.
- Lead/lag strategies continue to be used to maintain ground track within requirement boundary.
- Plan to perform future maneuvers during fixed yaw flying forward periods, if possible.